Gene quantification by the NanoGene assay is resistant to inhibition by humic acids.
نویسندگان
چکیده
NanoGene assay is a magnetic bead and quantum dot nanoparticles based gene quantification assay. It relies on a set of probe and signaling probe DNAs to capture the target DNA via hybridization. We have demonstrated the inhibition resistance of the NanoGene assay using humic acids laden genomic DNA (gDNA). At 1 μg of humic acid per mL, quantitiative PCR (qPCR) was inhibited to 0% of its quantification capability whereas NanoGene assay was able to maintain more than 60% of its quantification capability. To further increase the inhibition resistance of NanoGene assay at high concentration of humic acids, we have identified the specific mechanisms that are responsible for the inhibition. We examined five potential mechanisms with which the humic acids can partially inhibit our NanoGene assay. The mechanisms examined were (1) adsorption of humic acids on the particle surface; (2) particle aggregation induced by humic acids; (3) fluorescence quenching of quantum dots by humic acids during hybridization; (4) humic acids mimicking of target DNA; and (5) nonspecific binding between humic acids and target gDNA. The investigation showed that no adsorption of humic acids onto the particles' surface was observed for the humic acids' concentration. Particle aggregation and fluorescence quenching were also negligible. Humic acids also did not mimic the target gDNA except 1000 μg of humic acids per mL and hence should not contribute to the partial inhibition. Four of the above mechanisms were not related to the inhibition effect of humic acids particularly at the environmentally relevant concentrations (<100 μg/mL). However, a substantial amount of nonspecific binding was observed between the humic acids and target gDNA. This possibly results in lesser amount of target gDNA being captured by the probe and signaling DNA.
منابع مشابه
Inhibitor resistance and in situ capability of nanoparticle based gene quantification.
We have demonstrated the preliminary results of the in situ monitoring capability of an inhibitor resistant gene quantification assay using magnetic bead (MB) and quantum dot (QD) nanoparticles (hereafter "MB-QD assay") for the detection of E. coli O157:H7 in environmental samples. The selectivity of the MB-QD assay was demonstrated via the discrimination of the target bacteria in the presence ...
متن کاملTaq polymerase reverses inhibition of quantitative real time polymerase chain reaction by humic acid.
AIM To investigate the dose-response effect of humic acid (HA) on the quantitative real time polymerase chain reaction (QRT-PCR) inhibition and the efficiency of Taq polymerase increment in preventing inhibition by HA in DNA extracted from ancient bones. METHODS DNA was isolated from bone samples and DNA quantification was conducted with the real-time 5' exonuclease detection assay (TaqMan), ...
متن کاملMechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments.
DNA quantification of soils and sediments is useful for the investigation of microbial communities and for the acquisition of their genomes that are exploited for the production of natural products. However, in such samples DNA quantification is impaired by humic acids (HA). Due to its lack of specificity and sensitivity, UV spectrophotometry cannot be applied. Consequently, fluorimetric assays...
متن کاملDesign of peptides interfering with iron-dependent regulator (IdeR) and evaluation of Mycobacterium tuberculosis growth inhibition
Objective(s): Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), stayed a global health thread with high mortality rate. Since TB has a long-term treatment, it leads high risk of drug resistant development, and there is an urgent to find new drugs. The aim of this study was designing new inhibitors for a new drug target, iron dependent regulator, IdeR. Materials and Method...
متن کاملEnhanced removal of humic acids (HAs) from aqueous solutions using MWCNTs modified by N-(3-nitro-benzylidene)-N-trimethoxysilylpropyl-ethane-1,2-diamine on Equilibrium, thermodynamic and kinetics
In this study, multi-walled carbon nanotubes modified by N-(3-nitro-benzylidene)-N-trimethoxysilylpropyl-ethane-1, 2-diamine (NBATSPED-MWCNTs) was prepared as a low-cost and non-toxic adsorbent. These materials was characterized by different techniques such as SEM, XRD and FT-IR and subsequently was used for the removal of humic acids (HAs) from aqueous solution. The influence of various opera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 45 20 شماره
صفحات -
تاریخ انتشار 2011